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Irregular many-body dynamics of spinor Bose-Einstein condensates in an optical lattice
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The classical and quantum irregular spin dynamics of atomic spinor Bose-Einstein condensates in an optical

lattice, where light-induced and static magnetic dipole-dipole interactions originate the interplay of the con-
densate at each site, are investigated. Classical-quantum correspondence in the large-spin limit is studied.
Quantum chaotic features are studied through analysis of the irregular spectrum and time evolution of the
Shannon entropy of wave packets. We show how the optical lattice strength influences the system dynamics,
and is responsible for a transition from regular to irregular bahavior.
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I. INTRODUCTION

Experimental loading of Bose-Einstein condensates
(BECs) into optical lattices has opened the possibility for the
creation of and research into strongly interacting many-body
systems, something traditionally reserved to condensed-
matter physics [1,2]. In particular, when quantum many-body
correlation effects dominate, making the mean-field ap-
proach invalid, the investigations of the quantum features of
such dynamical systems constitute a new frontier in BEC
studies [3-5]. On the other hand, BEC also offers a new
benchmark to explore magnetic properties and spin-
dependent dynamics, due to the success in experiment devel-
opment of trapping and creation of atomic BECs in all-
optical potentials [6]. Pu and co-workers [7] argued that
BEC:s confined in optical lattices exhibit ferromagnetic prop-
erties, behaving like an array of spin magnets. In their inves-
tigations, the static magnetic and/or light-induced dipole-
dipole interactions induce coupling between BECs at each
site of the lattice, which is different from the exchange inter-
action of electrons between atoms in the solid state. This new
environment has stimulated the present study on the spin
dynamics of such systems, in which special attention will be
paid to the associated dynamical complexity.

For deep optical lattice potentials and when the spin de-
grees of freedom are considered, the tight binding method
provides a natural connection between the system formed by
a BEC in an optical lattice and the lattice spin model [7].
This opens new possible ways to study quantum many-body
systems, to perform in various ways quantum-information
processing [8], and even to realize special purpose quantum
computers, so-called quantum simulators [9]. On the other
hand, the integrability of spin lattice systems is also a main
research topic [10,11]. Although the phenomenology of
BECs in optical lattices is very similar to that of atoms in
solid crystals, it has its own peculiarities. For example, due
to Bose-enhancement effects, the microcondensations at each
site behave like magnets with very large spin quantum num-
bers; this can be treated to a very good approximation within
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the classical limit. This provides a good platform to investi-
gate classical-quantum correspondence in chaotic spin dy-
namics. Additionally, in generic solid materials, the unavoid-
able effects of impurities can be confused with the eventual
chaotic phenomena. BECs in optical lattices offer, however,
a cleaner environment. Finally, optical lattices may provide a
tunable parameter in an unprecedentedly wide experimental
range, which means that the system can be fully and pre-
cisely controlled.

In the present work, we investigate classical chaotic spin
dynamics and the corresponding irregular spectra at the
quantum level for spinor BECs in an optical lattice. The
transition to chaos for different energy and system param-
eters is demonstrated. The dynamical irregularity in the time
evolution of the system is also studied, through the evolution
of the Shannon entropy of wave packets. As is well known, a
linear increase of this entropy with time implies that quan-
tum chaos sets in. The influence of light-induced dipolar in-
teractions on the integrability of the system is also discussed
in connection with this process.

The organization of the paper is as follows. In the next
section we discuss the model, and the type of calculations we
perform in this work. Section III is devoted to the presenta-
tion of the corresponding results, which are also thoroughly
discussed. Finally, in Sec. IV we summarize the main con-
clusions that can be derived from our work.

II. SYSTEM AND CALCULATIONS

We consider here BECs loaded into an optical lattice and
the static magnetic and/or light-induced dipole-dipole inter-
actions response to the coupling between condensates at each
site. Then, under the customary tight binding approximation,
the following Hamiltonian can be used as our starting theo-
retical point [7]:
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where S; is the collective spin operator with components
S”l{i’Z}. The first term in the Hamiltonian (1) comes from spin-
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dependent interatomic collisions, the second term denotes
the coupling of the atoms to an external magnetic field, and
the last two terms indicate the coupling caused by the static
magnetic field and light-induced dipolar interactions, respec-
tively. The coefficient 2J;;—J;;, which depends only on the
light-induced dipole-dipole interaction, is proportional to the
strength of the optical lattice field.

Now, we consider the simple case of three sites with pe-
riodic boundary conditions. An alternative experimental pos-
sibility is that where the BECs are loaded into a triangular
Kagomé lattice [12]. When only the nearest neighbor inter-
actions are considered, a triangular three-site model can be
decoupled from the whole lattice system [13]. Thus, in Eq.
(1) we can restrict the existing indices to 1 =i, j=3. Suppos-
ing that the number of BEC atoms at each site, N;, is the
same, the total spin at site i has an identically fixed value
expressed as S, which can be a large number because of Bose
enhancement. Consequently, the first term in Hamiltonian (1)
is a constant, which will be neglected hereafter. Assuming
that the external magnetic field is aligned with the z direc-
tion, and scaling the Hamiltonian by vyB,, Eq. (1) can be
reduced to a two-parameter Hamiltonian, which reads

3
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where S,=5, and average values J and J* have been used in
p=(2J-J%)1J%, a=J/(ygB,) to account for the coefficients
J;;j and ij, respectively. Obviously, for a given external mag-
netic field, these two parameters «,p, characterizing the
static magnetic and light-induced dipole-dipole interactions,
respectively, can be varied by modulating the optical lattice
setup. For simplicity, we fix the parameter =1 throughout
the paper, and change the value of p to explore the effects
caused by the light-induced interaction.

III. RESULTS AND DISCUSSION

In the classical limit, S; is a three-component vector
obeying the equations of motion dS;/dt={S;, H}

a a
=S;X(=6H/4S;), where {--+} indicates a classical Poisson
bracket. Here, we suppose that the spin magnitude of each
microcondensation is conserved, due to the fact that the
number of condensed atoms in each site is fixed. It is easy to
verify that, in addition to the energy being a conserved quan-

tity, the three components of TzEj.zlS ; are also constants of
the motion for the isotropic case p=0. Furthermore, only
F:E;:lSj is an invariant constant for the anisotropic case
p#0. So we have effectively two- and four-dimensional
phase space for the isotropic limit and anisotropic case, re-
spectively, showing that it is the parameter p that makes the
system change from integrability to chaoticity. Accordingly,
the system Hamiltonian can be split into two parts
H=Hq+H', where H, corresponds to the integrable isotro-
pic case and H' is the perturbation, which is proportional to
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FIG. 1. (Color online) Poincaré surfaces of section in the plane
(53.8%). Initial conditions ¢{(0)=0, 6,(0)=m/2, ¢3(0)=0 are
fixed. In the top row, the interaction parameter p=0.5 and (a)
0,(0)=0.5, ¢,(0)=0, and thus E=-2.9426; (b) 6,(0)=1, ¢,(0)
=2m/3, E=0.10034; (¢) 6,(0)=0.5, ¢ (0)=7, E=1.273 56. In
the bottom row, E=0.4, ¢,(0)=2m/3, and (d) 6,(0)=0.08, p
=0.001; (e) 6,(0)=0.14, p=0.08; (f) 6,(0)=0.331, p=0.5.

the light-induced interaction parameter p. We now define
each spin with the aid of polar and azimuthal angles, so that

§j=S(sin 0 cos ¢;, sin 6 sin ¢;, cos 6;). Now, taking into
account the condition cos 6;+cos 6,+cos 6;=T, it is easy to
verify that the energy of the system is associated with four
independent initial polar and azimuthal angles.

In the classical limit, the corresponding dynamics can be
analyzed with the aid of Poincaré surfaces of section. We
will take the spin magnitude S=1, without loss of generality.
In our case the surfaces of section will be plotted in the plane
of (83,53) and represent the points obtained when the orbits

Sy positively cross dS5/dt=0. Some results are shown in Fig.
1. In the top row, the plots corresponding to different initial
conditions, such that E=-2.9426 (a), 0.100 34 (b), and
1.273 56 (c), are shown. As can be seen, when the energy of
the system increases, an increasing number of regular orbits
in phase space are destroyed, and chaos emerges, being
dominant at the higher energy considered. In the bottom row,
we present results corresponding to a fixed value of the sys-
tem energy, taken equal to E=0.4. Different optically in-
duced dipole-dipole interactions corresponding to p
=0.001,0.08,0.5 have been used [Figs. 1(d)-1(f)]. The re-
sults show that the system undergoes a transition from regu-
lar to chaotic dynamics as the parameter p increases.

Let us proceed now to describe our quantum study, which
is twofold. First, we have investigated the distributions of the
quantum energy levels. Second, we have also considered the
issue of the time evolution of wave packets, by using a dy-
namical entropy to gauge the associated phenomena [14-16].
Due to the C5, symmetry of the system, it is convenient to
choose the following basis states [10] for our study:
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FIG. 2. (Color online) Energy spectrum of the system for S
=21.5. In the right panel an enlargement is presented. The irregular
distribution in the high-energy regime, where the classical counter-
part shows a chaotic dynamics, is apparent.
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with  m,, . =(=S,-S+1,...,5-1,5). Here, the wave
number K (0,27/3,4w/3), parity (+1,-1), and

magnetization T°=m,+my+m, are the quantum numbers
that characterize the basis vectors. Using the
relationships  (S,m’|S¥S,m);=m3,,,, and (S,m'[S;’|S,m);
=[(SFm)(S=m+1)]"25, ,+1, which are well known in
spin physics, the matrix for the Hamilton can be constructed.
The actual values of K=0 and 7°=1/2 for the quantum num-
bers and +1 for the parity were chosen. The corresponding
energies for S=21.5, scaled using S(S+1), are shown in Fig.
2 as a function of the light-induced dipole-dipole interaction
parameter p.

Let us remark that the results we have presented corre-
spond to a (relatively) large value of S, and thus the validity
of the semiclassical limit can be assumed. In this situation,
there are qualitatively different structures appearing in differ-
ent energy intervals, depending on whether the classical
counterparts have predominantly regular or chaotic orbits in
that interval. As demonstrated in Fig. 2, in the high-energy
region, energy levels appear irregularly distributed, while
well-separated clustered level structures are typical in the
low-energy region. The existence of level repulsions, charac-
teristic of irregular spectra, can be clearly seen in the right
part of the figure, where an enlarged portion of the whole set
of data is shown. Starting at the integrable limit p— 0, the
levels start from a series of degenerate energies, and then
they split. As these separations broaden as p increases, the
levels reach a point at which they start to interact signifi-
cantly and then strongly mix. In this regime, an irregular
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spectrum for highly excited states emerges. In other words,
by modulating the optical lattice strength, the highly excited
states of system undergo a transition from regular to chaotic.
From another point of view, this kind of transition from regu-
lar to chaotic in the quantum case for large values of the spin
quantum numbers (semiclassical limit) is not unexpected
when the classical corresponding behavior is considered. The
irregular distribution and level clustering is nothing but the
manifestation of chaoticity in the most classical orbits
present in Figs. 1(b), 1(c), 1(e), and 1(f), and the regular
behavior of those orbits in Figs. 1(a) and 1(d). The origin of
chaos in this system in the highly excited large-spin states is
related to the very high density of levels existing in this
portion of the spectrum. In it, the density of states increases
extremely fast (typically exponentially) with both spin mag-
nitude and energy. As a consequence, the spacing between
these large-spin levels is exponentially small and any “re-
sidual” interaction mediated by the value of the parameter p
greatly affects the integrability of the system. In this way, a
large number of levels mix in the integrable limit.

Due to the extremely high density of energy levels, it is
often impossible to resolve individual large-spin levels.
Therefore, apart from investigations on quantum chaos that
are carried out from the stationary dynamical point of view,
it is also necessary to study the time-dependent properties of
the system, in order to explore the signatures of quantum
chaos in it. In order to investigate chaotic features in highly
excited states, entropy is a very appropriate quantity to char-
acterize the dynamical properties of this system [14-16].
Here, we choose to use the eigenstates |j) of the integrable
part in the full Hamiltonian H as the basis set in which to
span our Hilbert space. Once the optical lattice is switched
on, the perturbation ' sets in. If we now expand the system
state |¢(t)) as a superposition of the above defined eigen-
states, the corresponding Shannon entropy can be defined as
S@)==2,|;(0*In|g;(1)|?, with (1) ={j| (1)) being the pro-
jections of Lﬂ(t)) onto the basis elements |j). For any given
initial wave packet ¢/(0), the wave function evolves accord-
ing to the Hamiltonian as ¢(r)=e~7""y{0). Projecting it over
the basis elements |j), the Shannon entropy is then easily
determined computationally. Obviously, the Shannon entropy
allows the estimation of the effective number N =~ e*® of
states in the integrable case that are involved in the dynamics
due to the optically induced light-induced interaction.

Let us now focus our attention on the evolution of the
entropy with time, for different excited states. Let us note
the importance of this magnitude as a signature to character-
ize quantum chaos. In our case, we will take the basis set of
initial states, {|/)}, formed by states numbers 5, 70, 135, 200,
265, and 330 with spin magnitude S=25.5, and evolve these
initial wave packets with p=0.5. The results for the corre-
sponding entropies are shown in Fig. 3. For low-energy
states (e.g., n=>5,70), there are obvious oscillations in the
evolution of the entropy with time, which are just manifes-
tations of the quantum fluctuations. However, for the highly
excited states (n=135,200,265,330), the entropy increases,
tending to a saturation value. The enhancement of the
entropy is due to the spread of the wave packets on the basis
of integrable case, and the saturation is caused by the finite-
ness of the Hilbert space. In particular, we find that for
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FIG. 3. (Color online) Time evolution of the entropy for differ-
ent initial excited eigenstates (of the integrable case) for a system
with a (large) value of the spin $§=25.5 and p=0.5.

n=135,200,265, the entropy increases with time linearly un-
til it gets to a saturation value, this being an important sig-
nature of quantum chaos [14—16]. This kind of linear ten-
dency implies that there is an exponential increase in the
effective number of principal components present in the
wave packet, and this state is populated ergodically in the
basis. In other words, this highly excited large-spin state ap-
pears as a “chaotic” superposition of the basis states.

In order to see the influence of the optical lattice strength
on the transition from regular to chaotic behavior in our sys-
tem, we have calculated the average entropy versus p. Some
results for different values of the spin magnitude are shown
in Fig. 4. Here, we have chosen the spin magnitude at each
site to be S=15.5, 20.5, 25.5, and 30.5, which give different
dimensions N,, for the Hilbert space. The initial states are
selected as the eigenstates of H, corresponding to the center
of the spectrum, where the many-body density of states is
large, and thus a small interaction drives the system into the
chaotic regime. After averaging the entropy along the total
propagated time, we plot the averaged entropy, divided by
Ny, as a function of the parameter p in Fig. 4. One can see
that the scaled entropy is a quantity that is very sensitive to
transition from the regular to the chaotic regime. As shown
in the figure, the average entropy changes from a very low
value to a high plateau, as the optical strength parameter
increases. Accordingly, for the highly excited large-spin
states of the system, quantum chaos sets in when the optical
parameter is modulated above a certain value.
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FIG. 4. (Color online) Normalized average entropy as a function
of the optically induced interaction parameter p for different spin
magnitudes given by S=15.5+5n with n=0, 1, 2, and 3.

IV. SUMMARY

Summarizing, in this paper we have studied the classical
and quantum dynamics of a Bose-Einstein condensate in a
three-site optical lattice, taking the long-range magnetic and
optically induced dipole-dipole interactions into account. In
the classical case, the existing chaotic dynamical structures
are revealed with the aid of Poincaré surfaces of section. The
quantum spectrum has also been presented and discussed,
showing clear evidence of irregularity in the high-energy re-
gime. As a complement, we have also investigated the time
evolution of the Shannon entropy of the system, finding that
the highly excited large-spin states can be viewed as a “cha-
otic” superposition of the Hilbert basis. The influence of the
optical induced parameter on the onset of chaos has also
been demonstrated by performing an analysis of the aver-
aged properties of the entropy.
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